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Abstract—Most of existing visual quality assessment algo-
rithms are tested on standard databases that are created in
controlled viewing conditions (e.g. display device, viewing distance
and lighting). This implies that all the recoded subjective scores
are only valid for the specific settings used in the database.
However, with the prevalence of mobile devices, the practical
viewing environments can significantly vary from moment to
moment. It is our daily experience that the same image can
look drastically different on dissimilar devices under changed
viewing distance and/or lighting conditions. In other words, a
gap exists between the eyes and the visual contents behind the
screen in current research of quality assessment. Therefore, in
this work, we perform subjective quality evaluation with varied
actual viewing conditions. To make the research reproducible,
we build a prototype system to record what the eyes really see
from the screen and construct the viewing environment-changed
image database. The database will be made available to the public.
Meanwhile we design a dedicated effective environment-assessing
algorithm. We believe that this work will benefit the research of
visual quality assessment towards more practical applications.

Keywords—Image quality assessment (IQA), viewing environ-
ments, subjective / objective assessment.

I. INTRODUCTION

Living in an information age, people are becoming ever
more demanding about display picture quality. There are many
viewing conditions such as desktop computing, digital graph-
ics design, digital photography, electronic interactive games;
as well as applications in technical, medical, industrial and
security applications where accurate imaging is an important
factor. Although the programme sources, the transmission and
the display technology are at the heart of the picture quality
improvement. The viewing environment also has a direct and
weighty impact on the picture quality. Viewing conditions
can have a profound impact on how viewers perceive videos
and images. These environmental factors can assist or impede
viewing comfort.

The Society of Motion Picture and Television Engineers
(SMPTE) is responsible for setting standards and practices
for the motion picture and related industries. The organiza-
tion’s recommended practices document (SMPTE RP 166-
1995) deals very specifically with viewing room conditions
and the interaction of viewers with studio monitors and the
environment in which they are used.

But except for the lucky minority who own a dedicated
home theater room, decorated strictly according to all of the
various SMPTE standards and practices that can improve the
viewing comfort in a large extent. Most residential viewing
environments can only be set up in a way that incorporates

and satisfies some of the more important professional viewing
environment conditions. What’s more, with the prevalence
of mobile devices, the practical viewing environments can
significantly vary from moment to moment. So we should
make out the influence of different environmental factors on
the viewing comfort.

In order to thoroughly understand the impact of view-
ing conditions, we construct a new dedicated viewing
environment-changed IQA database (VEID). Some recommen-
dations regarding the viewing environment have been given for
television pictures [1], multimedia [2], 3DTV [3], flat panel
displays [4], and mobile devices [5]. And some databases [6]–
[8] take those suggestions during subjective tests. However,
our practices to evaluate the environment should be different.
The database [9] changes the viewing distance in the subjective
test and considers the effects of viewing distance and image
resolution on viewing experience. We here choose the high-
quality images to display and vary the viewing condition to
do the assessment of the environment. We set up a prototype
system to capture image contents. The subjective evaluations
and ratings are made by observers under different viewing
conditions.

Such assessment ought to be done by dedicated device
with the development of robotization technique. Over the
years, a number of researchers have contributed significant
research in the design of objective IQA algorithms. Device
using IQA algorithms can be set up to evaluate the effect
of different surroundings on the viewing experience. It is
effective, objective and more convenient.

The goal of IQA is to design algorithms for objective
evaluation of quality in a way that is consistent with subjective
human evaluation. The largest number of objective image qual-
ity assessment metrics are full-reference (FR) methods [10]–
[13], which assume that the original image signal is completely
known. Those metrics are usually of high performance. How-
ever, the dependence of original images severely reduces its
applicability, and FR IQA methods measure the fidelity to the
reference which will take image enhancement as “distortions”.
To solve these problems, many blind quality measures have
been developed during the last decade [14], [15]. Those NR
IQA methods are applicable in many more practical scenarios
and show high performance on image databases.

Here we design one dedicated algorithm to evaluate the
viewing environment. During the subjective test, digital camera
is used to simulate the behavior of human eyes as much
as possible. We propose our objective environment-assessing
algorithm to simulate the brain to evaluate the comfort of the



Fig. 1: The usage of our prototype system: The camera site can be
altered according to need. We can control the slide rails to move
the camera to position 1,2,3,4 in the picture. At the same time, the
manipulator arms can rotate in the vertical direction and horizontal
direction as 5 and 6 show.

viewing environment. Our idea is to simulate the process from
eye to brain. The images to display are all of high quality and
the distortions are introduced by changing different viewing
environmental factors. We first predict what brain perceives
with the free energy [16]. Then we calculate the feature points
in the valid region. By assessing the captured images, designed
algorithm gives the evaluation of different viewing conditions.
It is one kind of algorithm which simulates human’s assessing
process.

The rest of this paper is organized as follows. Section II
first presents the construction of VEID. In Section III, the
proposed algorithm is explained in detail. The effectiveness
of our algorithm is proved by experimental results in Section
IV. Finally, concluding remarks are given in Section V.

II. DATABASE CONSTRUCTION

For the convenience of the research about the effects
of different environmental factors on the image quality, we
construct the viewing environment-changed image database.
We elaborately decorate the photostudio and design different
environments to cover actual viewing conditions that are
common in our daily life.

We build a prototype system to make the research repro-
ducible. The whole system consists of slide rails, manipulator
arms and a digital camera. The digital camera is used to capture
the image on the display under different viewing conditions.
The camera is set to auto mode to simulate the behavior of
human eyes as much as possible. The manipulator arms hold
the camera and control the rotation in horizontal and vertical
directions. The slide rails support the manipulator arms and
control the shift in horizontal directions. The usage of the
system is shown in Fig. 1. The photos of the system and the
scene are shown in Fig. 2.

The prototype system is used to capture the image on
the display under different viewing conditions. We carefully
prepare different viewing environments and take several envi-
ronmental factors into account.

Fig. 2: Prototype system: photos of manipulator arms, digital camera,
the slide rail, the 180-inch projection screen, 4k projector and TN
LCD.

(1) Viewing Distance: The distance the viewer is from
the screen will have a significant impact on perceived
image quality. In ideal conditions, observers can per-
ceive a sharp smooth image, free of visible pixels or
image artifacts. However, different viewing distances
usually happen in common experience. Here we set
three distances from the screen and at each position
we use the system to capture the image on the display.

(2) Viewing Angle: Seating locations relative to the screen
must be emphasized. Different viewing angles of seat-
ings from the centerline of the screen on the horizontal
axis and the vertical viewing angles below the horizon
will impede viewing comfort in different extent.

(3) Room Lighting: Room lighting must be controlled
to avoid screen reflections. Reflections, haze, and
diffused glare will interfere with the light coming from
the display and this will result in direct compromises
in picture quality. In our database, we set different
levels of brightness and let the camera capture the
display under these varied lighting environments.

(4) Bias Lighting: During the course of the typical movie
or TV program, the images that appear on the screen
range widely from very dark to very brightly lit
scenes. This range of picture brightness causes the
iris in our eyes to open wide during dark scenes and
then shutter down during the brightest images. Over
time, this leads to fatigue to our eyes and associated



Fig. 3: The fifteen captures of the TN LCD.

Fig. 4: The first row is of different distances. The second row is
of different angles. The third is of different bias color temperature.
The forth is of different bias brightness. The fifth is of different
room lighting.

muscle groups, causing short-term discomfort and
possibly long-term fatigue. Correctly implementing
bias lighting into the typical viewing environment
will minimize the extremes of iris movement and
lead to more comfortable viewing. Besides, the color
temperature of bias lighting also concerns. Lighting
with different color temperatures will cause different
effects on the experience. In our database, we set bias
lighting of different colors and bright scale levels.

To discover the effect of environmental factors, we try to
eliminate other adverse effects on image quality before capture.

TABLE I: The experimental conditions and some important
device that are used during the construction of the database.

Viewing distance 2 / 4 / 6 times the image height

Viewing angle 0 / 30 / 45 horizontal degrees,
10 / 20 vertical degrees

Viewing lighting

no additional lighting
fluorescent lamp above the screen
fluorescent lamp above the seat
fluorescent lamp behind the seat

fluorescent lamp around the room

Viewing bias lighting

four gray scale levels
(0, 100, 150, 200 among 0-255)

three color temperature
(2462k, 6676k, 11415k)

Digital camera

HERO3+ Black Edition
resolution is 12MP

with auto spot metering on
remote wireless controlled

TN LCD DELL P2815Q
4K projector SONY VPL-VW1100

We use the 180-inch projection screen and the matched 4K
projector to deliver images and exhibit outstanding picture
quality overall. Images of high quality are placed onto the
pure-color background which is used to simulate bias lightings.
After the capture, we choose the 1000*600 pixel-sized region
containing the image to display and cut the 1000*600 sized
region out as one database image.

Using the above mentioned method, we construct the
new dedicated viewing environment-changed image database
(VEID). The proposed database consists of 140 images cap-
tured under different viewing conditions and 10 pristine im-
ages. There are five lighting modes, seven kinds of bias
lighting, three distances and five different viewing angles in
VEID. The total number of designed environments is twenty-
five. Besides, we do fifteen captures of the twisted nematic
liquid crystal display (TN LCD) from different angles for
its popularity but small range of viewing angles and general
ability of color reproduction. The fifteen images as shown in
Fig. 3 of TN LCD can reflect the problem. Fig. 4 shows some
other images in the database. Table I gives some important
information during the construction of the database.

Reliable subjective evaluations to represent the ground truth
are one of the most important components for the evaluation
and benchmarking of new image quality assessment algorithms
[17]. In our subjective test, the more effective way to carry
out the perceptual quality evaluation is to provide observers
with the same viewing environment as that of the capture.
In other words, observers are instructed to sit under different
viewing conditions to assess the content on the display. We
only replace the camera with observers to do the evaluation
under different viewing conditions. Fig. 5 shows the averaged
scores under the twenty-five designed viewing conditions. We
can conclude that the strong lighting which falls onto the
screen will ruin the experience. And inappropriate bias lighting
will also impede the viewing comfort. Although the database
is almost constructed using the dedicated projector, the images
that reflect the effects of the viewing environment on the
viewing comfort also have sufficient reference for other kinds
of display technology.



Fig. 5: Each bar averages the subjective scores of images for one viewing condition. The x-axis represents the twenty-five
different viewing environments. They are further divided into six groups and each group focuses on different factors.
Within one group from left to right are viewing conditions from good to bad.

III. OBJECTIVE EVALUATION

We design the objective method to assess different viewing
environments. We first want to predict what human brain
perceives. Given an image signal I , the free-energy principle
suggests that the cognitive process is governed by an internal
generative model G in the brain [16], [18]. Given different
scenes or images, the model G will adapt itself through varying
a parameter vector θ . Then the free energy caused by image I
can be computed by integrating the joint distribution P (I, θ|G)
over the space of model parameter θ. The minimization of free
energy equals the maximization of the model evidence.

− logP (I|G) = − log

∫
P (I, θ|G)dθ. (1)

We can use an auxiliary posterior distribution Q(θ|I,G) to
calculate the surprise of I in (1). Referring to [16], we can drop
the latent model assumption G in our analysis for simplicity,
since the behavior of the model can be characterized by
parameter θ. By letting the auxiliary term into (1) and using
Jensen’s inequality we have

− logP (I) ≤ −
∫
Q(θ|I) log P (I, θ)

Q(θ|I)
dθ. (2)

The right hand side of (2) is defined as the free energy:

F (I, θ) = −
∫
Q(θ|I) log P (I, θ)

Q(θ|I)
dθ. (3)

By noticing that P (I, θ) = P (θ|I)P (I), we can write (3) into

F (I, θ) =

∫
Q(θ|I) log Q(θ|I)

P (θ|I)P (I)
dθ

= − logP (I) +

∫
Q(θ|I) log Q(θ|I)

P (θ|I)
dθ

= EQ[− logP (I|θ)] +KL (Q(θ|I)‖P (θ)) . (4)

TABLE II: Self-adaptive classification considering color information
via kmeans.

Image classification ( input image D, threshold T , output divi-
sion map M , number of clusters to be classified N , cluster cen-
troid locations C and the final separated binary map W )
1. Let N = 2 be the initial number of clusters to be classified.
2. Let D be the input of kmeans function. Kmeans partition the
H − by − 3 data matrix into N clusters where H is the number
of pixels and 3 represents the RGB color information. Each clu-
ster contains pixels with similar color information. Calculate the
proportion P of the smallest cluster.
3. Add one to the number of clusters to be classified N .
4. Iterate between (2) and (3) until P < T .
5. Return M , N , C.
6. Take several sampling points at the four corners of M .
7. Classify all the pixels with the same cluster as the sampling
points as the background region. Classify the others as the valid
region.
8. Estimate the valid region. Return to step 2 and apply zigzag
change to T if it is not a quadrangle. Otherwise output this as W.

Here the term KL (Q(θ|I)‖P (θ)) measures the distance be-
tween the recognition densities and the true prior of the
model parameters. The term EQ[− logP (I|θ)] is the averaged
entropy of predicting I .

We hope to compute the free energy. For operational
amenability we can hypothesize the generative model G to be
a 2D linear autoregressive (AR) model for its high description
capability for natural images. The AR model is defined as

xn = χk(xn)α+ εn (5)

where xn is the nth pixel, χk(xn) is a row-vector that consists
of k nearest neighbors of xn, α = (α1, α2, α3, ..., αk)

T is
the vector of AR coefficients and the εn is the error term.



Fig. 6: Results of the division: (a) is the input image, (b) is the division
map according to color information. (c) is the separated binary map
and the white area is the valid region. (d) shows the extracted feature
points.

Under the large sample condition, the free energy equals the
total description length of image I . So we estimate the AR
coefficients by minimizing the description length

α̂ = argmin
α

(− logP (I|α) +
k

2
logN) (6)

where N is the data sample size. We fix the order and the
training set size of the model and thus turn the comparison
process into residual minimization

α̂ = argmin
α
||x−Xα||2 (7)

where x = (x1, x2, ..., xN )T and X(n, :) = χk(xn). And the
parameter can be solved as α̂ = (XTX)−1XTx. In this case,
the parameter θ of the model can be well described by α̂.
And then we can get the prediction of brain perceived image
through the model.

The captured images are not suitable for direct calculation,
because they are also surrounded by background regions. The
size of images in database is 1000*600 pixels but the valid
region to be assessed is only the area recording the picture
displayed on the screen. These pictures are captured under
different viewing conditions, so the quality of the recorded
picture can reflect the effect of environment. What we should
do is to separate the background region and the valid region.
We design an self-adaptive algorithm to do the classification.
Table II gives the detailed operation.

Fig. 6 (b) is the result of color classification for Fig. 6 (a).
The input image is classified into ten clusters according to the
main color information as the division map (b) shows. Then
after sampling at the corners of (b), the further separation as
(c) shows between background and valid region is processed.
To be more accurate and to eliminate the effect of the edge, we
further apply the erosion and dilation operations. We first use
the positive one to do the dilation to fill the black holes. And
then we do the erosion to shrink the valid region to remove
the effect of the edge.

When observers watch the screen displaying the same
content but under different conditions. Observers will make
out that the content on the screen is unchanged but is subject

to a range of transformation, including scaling, affine stretch,
change in brightness and contrast. Because some unchanged
features that brain perceives will help observers to recognize
the image. Mikolajczyk (2002) found that the maxima and
minima of σ2∇2G produce the most stable image features
compared to a range of other possible image functions, such
as the gradient, Hessian, or Harris corner function [19]. Ac-
cording to research [20], about 80 percent of keypoints in
the transformed image are of the stable features that can be
detected at a matching location and scale. In other words, the
extracted feature points are almost of good properties. So the
number of this kind of keypoints can be regarded as evaluation
basis. Besides, the computation is also convenient. The σ2∇2G
can be computed from the difference of Gaussian.

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (8)

Keypoints are defined as the scale-space extrema. Each
sample point is compared to its eight neighbors in the current
image and eighteen neighbors in the above and below images.
We take the effect of different lighting conditions into account
by thresholding the value of the sample point. Fig. 6 (d) shows
the extraction of keypoints.

So after the simulation of brain function to get the pre-
diction of brain perceived image, we evaluate the keypoints
of the valid region. We calculate the number of keypoints in
one set of images which record the same picture but affected
by different environmental factors. The number of keypoints
is only affected by the environmental factors and thus it can
be used to assess the quality of environments.

IV. EXPERIMENTAL RESULTS

We apply our objective method to five datasets ( one image
captured under various viewing conditions are classified as one
dataset ) in VEID to validate its effectiveness of evaluating the
viewing environment. The images in the same dataset record
the same picture but are captured under twenty-five different
viewing conditions. Our proposed method is suitable to evalu-
ate images of the same recorded content. It is inappropriate
for our method to evaluate the images which are captured
under different environments and meanwhile record different
contents. So the evaluation of environmental factors is carried
out among each of the five datasets. We display scatter plots
of MOS versus predicted MOS on five datasets in Fig. 7. From
the figure we can see that the objective evaluation is consistent
with the subjective evaluation of different environments.

Pearson linear correlation coefficient (PLCC) and Spear-
man rank-order correlation coefficient (SROCC) are used to
evaluate performance of our approach. PLCC can be con-
sidered as a measure of prediction accuracy, while SROCC
measures the monotonicity by ignoring the relative distance
between data. The higher SROCC and PLCC values indicate
better performance in terms of correlation with human opinion.

Table III gives the SROCC and PLCC results on the five
datasets. The table shows that evaluation of the environments
by our objective method is consistent with the subjective
assessment. Considering that the recorded images in our
database are almost under the transformation of scaling and
affine stretch, so common objective IQA approaches are not
suitable to evaluate these images. And here we do not study



Fig. 7: Scatter plots of MOS vs. Predicted MOS on five datasets.
The (red) lines are curves fitted with the logistic function and the
(black) dash lines are 95% confidence intervals. The last is the
overall graph.

TABLE III: The experimental results on the five datasets. One
image captured under various viewing conditions are classified
as one dataset.

VEID Database PLCC SROCC
Dataset1 0.948 0.912
Dataset2 0.959 0.923
Dataset3 0.949 0.921
Dataset4 0.949 0.903
Dataset5 0.943 0.924

the modifications of these methods to make them suitable for
VEID because of the limited time and space.

We further explore about the environmental factors. We can
draw some conclusions from the observation of the results.
Small viewing angles from the centerline on the horizontal
axis or the vertical axis have a small effect on the viewing
experience. The strong lighting falls onto the screen area or
in the path from display to viewer will impede the viewing
comfort. The bias lighting that is restricted to the area behind
the display illuminates the wall facing the viewer and it is
beneficial in significantly improving the viewing comfort and
reducing the eye strain.

V. CONCLUSION

In this paper, we set up a prototype system to emulate the
eyes’ function of capturing light signals under different envi-
ronmental conditions and make the research reproducible. We
construct the VEID with the dedicated system, photostudio and
well-designed viewing environments to discover the impacts
of environmental factors on viewing experience. Finally we
propose an objective method to assess the viewing condition
and demonstrate its effectiveness.
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